[vc_row][vc_column][vc_single_image image=”4147″ img_size=”large”][/vc_column][/vc_row][vc_row][vc_column width=”1/2″][vc_column_text]Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the traditional circuits of the public switched telephone network. Prior to ISDN, the telephone system was viewed as a way to transport voice, with some special services available for data. The key feature of ISDN is that it integrates speech and data on the same lines, adding features that were not available in the classic telephone system. The ISDN standards define several kinds of access interfaces, such as Basic Rate Interface (BRI), Primary Rate Interface (PRI), Narrowband ISDN (N-ISDN), and Broadband ISDN (B-ISDN).

ISDN is a circuit-switched telephone network system, which also provides access to packet switched networks, designed to allow digital transmission of voice and data over ordinary telephone copper wires, resulting in potentially better voice quality than an analog phone can provide. It offers circuit-switched connections (for either voice or data), and packet-switched connections (for data), in increments of 64 kilobit/s. In some countries, ISDN found major market application for Internet access, in which ISDN typically provides a maximum of 128 kbit/s bandwidth in both upstream and downstream directions. Channel bonding can achieve a greater data rate; typically the ISDN B-channels of three or four BRIs (six to eight 64 kbit/s channels) are bonded.

ISDN is employed as the network, data-link and physical layers in the context of the OSI model. In common use, ISDN is often limited to usage to Q.931 and related protocols, which are a set of signaling protocols establishing and breaking circuit-switched connections, and for advanced calling features for the user. They were introduced in 1986.

In a videoconference, ISDN provides simultaneous voice, video, and text transmission between individual desktop videoconferencing systems and group (room) videoconferencing systems.

[/vc_column_text][/vc_column][vc_column width=”1/2″][vc_column_text]Basic Rate Interface
The entry level interface to ISDN is the Basic Rate Interface (BRI), a 128 kbit/s service delivered over a pair of standard telephone copper wires. The 144 kbit/s overall payload rate is divided into two 64 kbit/s bearer channels (‘B’ channels) and one 16 kbit/s signaling channel (‘D’ channel or data channel). This is sometimes referred to as 2B+D.
The interface specifies the following network interfaces:
• The U interface is a two-wire interface between the exchange and a network terminating unit, which is usually the demarcation point in non-North American networks.
• The T interface is a serial interface between a computing device and a terminal adapter, which is the digital equivalent of a modem.
• The S interface is a four-wire bus that ISDN consumer devices plug into; the S & T reference points are commonly implemented as a single interface labeled ‘S/T’ on a Network termination 1 (NT1).
• The R interface defines the point between a non-ISDN device and a terminal adapter (TA) which provides translation to and from such a device.

Primary Rate Interface
The other ISDN access available is the Primary Rate Interface (PRI), which is carried over T-carrier (T1) with 24 time slots (channels) in North America, and over E-carrier (E1) with 32 channels in most other countries. Each channel provides transmission at a 64 kbit/s data rate.
With the E1 carrier, the available channels are divided into 30 bearer (B) channels, one data (D) channel, and one timing and alarm channel. This scheme is often referred to as 30B+2D.
In North America, PRI service is delivered via T1 carriers with only one data channel, often referred to as 23B+D, and a total data rate of 1544 kbit/s. Non-Facility Associated Signalling (NFAS) allows two or more PRI circuits to be controlled by a single D channel, which is sometimes called 23B+D + n*24B. D-channel backup allows for a second D channel in case the primary fails. NFAS is commonly used on a Digital Signal 3 (DS3/T3).
PRI-ISDN is popular throughout the world, especially for connecting private branch exchanges to the public switched telephone network (PSTN).
Even though many network professionals use the term ISDN to refer to the lower-bandwidth BRI circuit, in North America BRI is relatively uncommon whilst PRI circuits serving PBXs are commonplace.[/vc_column_text][/vc_column][/vc_row]

Scroll to Top